
11

Design and implementation of Self-Design and implementation of Self-
Healing systemsHealing systems

Presented by Rean GriffithPresented by Rean Griffith
PhD Candidacy ExamPhD Candidacy Exam
November 23November 23rdrd, 2004, 2004

22

Self-Healing Systems Self-Healing Systems

A self healing system “…automatically A self healing system “…automatically
detects, diagnoses and repairs localized detects, diagnoses and repairs localized
software and hardware problems” – software and hardware problems” – The Vision The Vision
of Autonomic Computing 2003 IEEE Computer Societyof Autonomic Computing 2003 IEEE Computer Society

33

Roots of Self-Healing Systems Roots of Self-Healing Systems

Dependability, Modeling
[6,7,8], Monitoring [9],
Diagnosis [11], Planning [16],
Adaptation for Repair [13, 19,
21] (System evolution)

Automatically detects,
diagnoses and repairs
localized software and
hardware problems

Self-Healing
systems
(’90’s+)

Focus on reliability and other
system qualities e.g.
Availability[26], Integrity[23,25],
Degradation [7], Maintainability

The trustworthiness of a
system that allows reliance
to be justifiably placed on
the service it delivers

Dependable
computing
(‘80’s)

Fault Model specification [5]
Fault Avoidance [1,3,5]
Fault Detection [1,3,4,5], Fault
Masking [3,4,5]

Ability of a system to
respond gracefully to an
unexpected hardware or
software failure

Fault tolerant
computing
(’70’s)

Foundation TechniquesDescriptionArea

44

OverviewOverview

Motivation for self-healing systemsMotivation for self-healing systems
Building a self-healing systemBuilding a self-healing system
Evaluating a self-healing system*Evaluating a self-healing system*

* - * - omitted from the presentation for the sake of brevity but will be discussed during Q & A as omitted from the presentation for the sake of brevity but will be discussed during Q & A as
necessarynecessary

55

Motivation for self-healing systemsMotivation for self-healing systems
We are building increasingly complex (distributed) systemsWe are building increasingly complex (distributed) systems
 Harder to build [1,12]Harder to build [1,12]
 Systems must evolve over time to meet changing user needs [13,14]Systems must evolve over time to meet changing user needs [13,14]
 Systems still fail embarrassingly often [26]Systems still fail embarrassingly often [26]
 Complex and expensive to manage and maintain [12] – human in the Complex and expensive to manage and maintain [12] – human in the

loop a potential bottleneck in problem resolutionloop a potential bottleneck in problem resolution
Computer systems are pervading our everyday livesComputer systems are pervading our everyday lives
 Increased dependency on systems e.g. financial networks [2]Increased dependency on systems e.g. financial networks [2]
 The more dependent users are on a system the less tolerant they are of The more dependent users are on a system the less tolerant they are of

interruptions [14]interruptions [14]
 The cost of downtime is prohibitive – not just monetary cost [18,26]The cost of downtime is prohibitive – not just monetary cost [18,26]

Can we remove the human operator and let the system manage and Can we remove the human operator and let the system manage and
maintain itself?maintain itself?
 Possible 24/7 monitoring and maintenancePossible 24/7 monitoring and maintenance
 CheaperCheaper
 Faster response and resolution than human administratorsFaster response and resolution than human administrators

66

Conceptual implementation of a Conceptual implementation of a
self-healing systemself-healing system

77

Building blocksBuilding blocks

Fault model specification (Koopman[5])Fault model specification (Koopman[5])
Design techniquesDesign techniques
 Fault avoidance (Cheung[1])Fault avoidance (Cheung[1])
 Incorporating repair via system modeling Incorporating repair via system modeling

(Koopman[7],Garlan[10])(Koopman[7],Garlan[10])

Implementation of system responses to faultsImplementation of system responses to faults
 Monitoring and Detection (Avizienis[4],Debusmann[9])Monitoring and Detection (Avizienis[4],Debusmann[9])
 Analysis & Diagnosis (Stojanovic[12],Chen[11])Analysis & Diagnosis (Stojanovic[12],Chen[11])
 Specific fault responses Specific fault responses

88

Fault Model SpecificationFault Model Specification

The fault model determines response strategy based on:The fault model determines response strategy based on:
 Fault durationFault duration

Permanent, intermittent, transientPermanent, intermittent, transient
 Fault manifestationFault manifestation

How will we detect?How will we detect?
What happens if we do nothing?What happens if we do nothing?

 Fault sourceFault source
Design defect, implementation defect, operational mistake, Design defect, implementation defect, operational mistake,
malicious attack, “wear-out”/system agingmalicious attack, “wear-out”/system aging

 Fault granularityFault granularity
Fault containment (component, subsystem, node, task)Fault containment (component, subsystem, node, task)

 Fault profile expectationsFault profile expectations
Any symptoms that are definite markers of imminent failure?Any symptoms that are definite markers of imminent failure?
Need to be robust for unexpected faultsNeed to be robust for unexpected faults

99

Incorporating repair via modelingIncorporating repair via modeling

Use architecture to group components into
feature sets that enable reasoning about
overall system utility. Gracefully degrading
systems have positive utility when any
combination of components fail

Design timeUtility
modeling
(Degradation)
[7]

Architectures encapsulate knowledge and
provide a basis for principled adaptation

Design timeArchitectural
models [8]

Disconnect between design and
implementation
Compliment design-time models by filling in
gaps

RuntimeDiscovering
architecture
(Discotect)
[10]

Reify architectural features as meta-objects
which can be observed and manipulated at
runtime

Design timeArchitectural
reflection [6]

RemarksWhen
constructed

Technique

1010

Building blocksBuilding blocks

Fault model specification (Koopman[5])Fault model specification (Koopman[5])
Design techniquesDesign techniques
 Fault avoidance (Cheung[1])Fault avoidance (Cheung[1])
 Incorporating repair via system modeling Incorporating repair via system modeling

(Koopman[7],Garlan[10])(Koopman[7],Garlan[10])

Implementation of system responses to faultsImplementation of system responses to faults
 Monitoring and Detection (Avizienis[4],Debusmann[9])Monitoring and Detection (Avizienis[4],Debusmann[9])
 Analysis & Diagnosis (Stojanovic[12],Chen[11])Analysis & Diagnosis (Stojanovic[12],Chen[11])
 Specific fault responses Specific fault responses

1111

Monitoring & DetectionMonitoring & Detection

DetectionDetection
 First step in responding to faults (Koopman[5])First step in responding to faults (Koopman[5])
 Different granularitiesDifferent granularities

Internal to the component (Self-checking software[1])Internal to the component (Self-checking software[1])
Supervisory checks (Recovery blocks [3])Supervisory checks (Recovery blocks [3])
Comparisons with replicated components (N-version [4])Comparisons with replicated components (N-version [4])
Instrumentation (Garlan[8],Debusmann[9],Valetto[21])Instrumentation (Garlan[8],Debusmann[9],Valetto[21])

 Different levels of intrusiveness of detection [1]Different levels of intrusiveness of detection [1]
Non-intrusive checking of resultsNon-intrusive checking of results
Execution of audit/check tasksExecution of audit/check tasks
Redundant task executionRedundant task execution
Online self-tests/periodic reboots for self-testsOnline self-tests/periodic reboots for self-tests
Fault injectionFault injection

1212

Building blocksBuilding blocks

Fault model specification (Koopman[5])Fault model specification (Koopman[5])
Design techniquesDesign techniques
 Fault avoidance (Cheung[1])Fault avoidance (Cheung[1])
 Incorporating repair via system modeling Incorporating repair via system modeling

(Koopman[7],Garlan[10])(Koopman[7],Garlan[10])

Implementation of system responses to faultsImplementation of system responses to faults
 Monitoring and Detection (Avizienis[4],Debusmann[9])Monitoring and Detection (Avizienis[4],Debusmann[9])
 Analysis & Diagnosis (Stojanovic[12],Chen[11])Analysis & Diagnosis (Stojanovic[12],Chen[11])
 Specific fault responses Specific fault responses

1313

Analysis & DiagnosisAnalysis & Diagnosis

Analysis [12] for problem determinationAnalysis [12] for problem determination
 Data correlation and inference technologies to Data correlation and inference technologies to

support automated continuous system analysis over support automated continuous system analysis over
monitoring datamonitoring data

 We need reference points – models and/or knowledge We need reference points – models and/or knowledge
repositories which we can use/reason over to repositories which we can use/reason over to
determine whether a problem existsdetermine whether a problem exists

Diagnosing faults [11]Diagnosing faults [11]
 Locates source of a fault after detection e.g. Decision Locates source of a fault after detection e.g. Decision

trees [11]trees [11]
Specificity down the offending line of code often not Specificity down the offending line of code often not
necessarynecessary

 Improve adaptation strategy selectionImprove adaptation strategy selection

1414

Building blocksBuilding blocks

Fault model specification (Koopman[5])Fault model specification (Koopman[5])
Design techniquesDesign techniques
 Fault avoidance (Cheung[1])Fault avoidance (Cheung[1])
 Incorporating repair via system modeling Incorporating repair via system modeling

(Koopman[7],Garlan[10])(Koopman[7],Garlan[10])

Implementation of system responses to faultsImplementation of system responses to faults
 Monitoring and Detection (Avizienis[4],Debusmann[9])Monitoring and Detection (Avizienis[4],Debusmann[9])
 Analysis & Diagnosis (Stojanovic[12],Chen[11])Analysis & Diagnosis (Stojanovic[12],Chen[11])
 Specific fault responses Specific fault responses

1515

Specific fault responsesSpecific fault responses

Fault responseFault response
 ReactiveReactive

Degradation e.g. Killing less important tasks (Koopman[5,7])Degradation e.g. Killing less important tasks (Koopman[5,7])
Repair Adaptations (Dynamic updates[18], Reconfigurations Repair Adaptations (Dynamic updates[18], Reconfigurations
[2,14,20,23])[2,14,20,23])
Roll forward with compensation (System-level undo [25])*Roll forward with compensation (System-level undo [25])*
Functional alternatives [28]*Functional alternatives [28]*
Requesting help from the outside (Koopman[5])Requesting help from the outside (Koopman[5])

 ProactiveProactive
Actions triggered by faults that are indicative of possible Actions triggered by faults that are indicative of possible
near-term failure (Koopman[5])near-term failure (Koopman[5])

 PreventativePreventative
Periodic micro-reboot, sub-system reboot, system reboot Periodic micro-reboot, sub-system reboot, system reboot
(Software Rejuventation[24])*(Software Rejuventation[24])*

* - omitted from the presentation for the sake of brevity but will be discussed during Q & A * - omitted from the presentation for the sake of brevity but will be discussed during Q & A
as necessaryas necessary

1616

DegradationDegradation

Degradation (Koopman[7])Degradation (Koopman[7])
 The degree of degraded operation of a systemThe degree of degraded operation of a system

……is its resilience to damage that exceeds built in redundancy is its resilience to damage that exceeds built in redundancy
(Koopman[5])(Koopman[5])

 System might not be able to restore 100% System might not be able to restore 100%
functionality after a faultfunctionality after a fault

 Some systems must fail if they are not 100% Some systems must fail if they are not 100%
functionalfunctional

 Others can degrade performance, shed tasks or Others can degrade performance, shed tasks or
failover to less computationally expensive degraded failover to less computationally expensive degraded
mode algorithmsmode algorithms

1717

AdaptationAdaptation

Adaptation allows a system to respond to its Adaptation allows a system to respond to its
environmentenvironment
Self-healing systems are expected to be Self-healing systems are expected to be
amenable to evolutionary change with minimal amenable to evolutionary change with minimal
downtime (Kramer[13])downtime (Kramer[13])
 Characteristic types of evolution (Oreizy[15])Characteristic types of evolution (Oreizy[15])

Corrective – removes software faultsCorrective – removes software faults
Perfective – enhances product functionalityPerfective – enhances product functionality

Self-healing systems can be:Self-healing systems can be:
 Closed adaptive (Oreizy[16]) – self containedClosed adaptive (Oreizy[16]) – self contained
 Open adaptive (Oreizy[16]) – amenable to adding Open adaptive (Oreizy[16]) – amenable to adding

new behaviorsnew behaviors

1818

Repair AdaptationsRepair Adaptations
Many kinds of repairsMany kinds of repairs
 ADT/Module replacement – Fabry[2]ADT/Module replacement – Fabry[2]
 Method replacement – Dymos [14]Method replacement – Dymos [14]
 Component replacement (Hot-swaps) DAS [14], K42 [20]Component replacement (Hot-swaps) DAS [14], K42 [20]
 Server replacement – Conic[13], MTS [14]Server replacement – Conic[13], MTS [14]
 Verifiable patches – Popcorn [18] (C-like language)Verifiable patches – Popcorn [18] (C-like language)

Risky changes to make in the regular update cycle of:Risky changes to make in the regular update cycle of:
 Stop systemStop system
 Apply updateApply update
 RestartRestart

Now we may have to perform repair as the system runsNow we may have to perform repair as the system runs
 Cost and risks will determine whether online repair is a viable Cost and risks will determine whether online repair is a viable

prospectprospect
 Can we make online repair less risky?Can we make online repair less risky?

1919

Adaptation techniquesAdaptation techniques

Zdonik[23]

Dymos[14]

Interface
Changes
supported?

Popcorn
[18] –
provably
safe patch

Popcorn
[18]

Popcorn –
programmer
hints

Popcorn[18]Arbitrary
patches

Conic[13]Conic[13]Server

DAS[14]
K42[20]

DAS[14]
K42[20]

Component
replacement

Dymos
[14]

Dymos –
program
state

Dymos[14]Method
replacement

Fabry[2]Fabry[2]Fabry[2]ADT/
Module
replacement

Verifiable/
provably
safe?

State
transfer

QuiescenceIndirectionLanguage/
compiler
support

Adaptation
granularity

2020

Managing the risk of online repairManaging the risk of online repair

Key activities Key activities
 Change management [13]Change management [13]

A principled aspect of runtime system evolution A principled aspect of runtime system evolution
that:that:

 Helps identify what must be changedHelps identify what must be changed
 Provides context for reasoning about, specifying and Provides context for reasoning about, specifying and

implementing changeimplementing change
 Controls change to preserve system integrity as well as Controls change to preserve system integrity as well as

meeting the additional extra-functional requirements of meeting the additional extra-functional requirements of
dependably systems e.g. availability, reliability etc.dependably systems e.g. availability, reliability etc.

2121

Motivation for Change Motivation for Change
ManagementManagement

Why change management is necessaryWhy change management is necessary
 Need for novel approaches to maintenanceNeed for novel approaches to maintenance
 Principled approaches – Model-based healing [19] – Principled approaches – Model-based healing [19] –

supported by reusable infrastructure e.g. Rainbow [2], supported by reusable infrastructure e.g. Rainbow [2],
Workflakes [21] preferred over ad hoc adaptation Workflakes [21] preferred over ad hoc adaptation
mechanismsmechanisms

Objectives of change management (Kramer[13])Objectives of change management (Kramer[13])
 Changes specified only in terms of system structure Changes specified only in terms of system structure

e.g. (Wermlinger[17])e.g. (Wermlinger[17])
 Change specifications are independent of application Change specifications are independent of application

protocols, algorithms or statesprotocols, algorithms or states
 Changes leave the system in a consistent stateChanges leave the system in a consistent state
 Change should minimize disruption to systemChange should minimize disruption to system

2222

Externalized adaptation [19,21,22]Externalized adaptation [19,21,22]

One or more models of a system are One or more models of a system are
maintained at runtime and external to the maintained at runtime and external to the
application as a basis for identifying application as a basis for identifying
problems and resolving themproblems and resolving them
Describe changes in terms of operations Describe changes in terms of operations
on the modelon the model
Changes to the model effects changes to Changes to the model effects changes to
the underlying systemthe underlying system

2323

Rainbow[22]Rainbow[22]

2424

Kinesthetics eXtreme (KX) Kinesthetics eXtreme (KX)
featuring Workflakes[21]featuring Workflakes[21]

2525

ConclusionsConclusions
Using models as the basis for guiding and Using models as the basis for guiding and
validating repair and system integrity is a validating repair and system integrity is a
promising principled approachpromising principled approach
Ontologies allow us to capture, reuse and Ontologies allow us to capture, reuse and
extend domain specific knowledgeextend domain specific knowledge
More flexible to construct the system such that More flexible to construct the system such that
there is a separation between functional there is a separation between functional
concerns and repair adaptation logic concerns and repair adaptation logic
Change management is integral to minimizing Change management is integral to minimizing
the risks of repairing a running systemthe risks of repairing a running system
We need other “benchmarks” for evaluating self-We need other “benchmarks” for evaluating self-
healing systems other than raw performancehealing systems other than raw performance

2626

ReferencesReferences
1. Design of Self-Checking Software

S. S. Yau, R. C. Cheung
Proceedings of the international conference on Reliable software pp 450 - 455 1975.

4. How to Design a System in which Modules can be changed on the fly
R. S. Fabry
International Conference on Software Engineering 1976.

• System Structure for Software Fault Tolerance
B. Randell
Proceedings of the international conference on Reliable software pp 437 - 449 1975.

• The N-Version Approach to Fault-Tolerant Software
Algirdas Avizienis, Fellow, IEEE, IEEE Transactions on Software Engineering Vol. SE-11 No. 12 December 1985.

• Elements of the Self-Healing Problem Space
Philip Koopman
ICSE Workshop on Architecting Dependable Systems 2003.

15. Architectural Reflection: Realising Software Architectures via Reflective Activities
Francesco Tisato, Andrea Savigni, Walter Cazzola, Andrea Sosio
Engineering Distributed Objects, Second International Workshop, EDO 2000, Davis, CA, USA, November 2-3, 2000, Revised
Papers pp 102 - 115.

18. Using Architectural Properties to Model and Measure System-Wide Graceful Degradation
C. Shelton and P. Koopman
Accepted to the Workshop on Architecting Dependable Systems sponsored by the International Conference on Software
Engineering (ICSE2002)

• Exploiting Architectural Design Knowledge to Support Self-Repairing Systems
Bradley Schmerl, David Garlan
Proceedings of the 14th international conference on Software engineering and knowledge engineering Pages: 241 - 248 2002.

• Efficient and transparent Instrumentation of Application Components using an Aspect-oriented Approach
M. Debusmann and Kurt Geihs
14th IFIP/IEEE Workshop on Distributed Systems: Operations and Management (DSOM 2003) pp 209--220.

• Discotect: A System for Discovering Architectures from Running Systems
Hong Yan, David Garlan, Bradley Schmerl, Jonathan Aldrich, Rick Kazman
International Conference on Software Engineering archive Proceedings of the 26th International Conference on Software
Engineering - Volume 00 Pages: 470 - 479 2004.

• Failure Diagnosis using Decision Trees
Mike Chen, Alice X. Zheng, Jim Lloyd, Michael I. Jordan, Eric A. Brewer
1st International Conference on Autonomic Computing (ICAC 2004), 17-19 May 2004, New York, NY, USA pp36 - 43.

2727

ReferencesReferences
1. The role of ontologies in autonomic computing systems

L. Stojanovic, J. Schneider, A. Maedche, S. Libischer, R. Studer, Th. Lumpp, A. Abecker, G. Breiter, and J. Dinger
IBM Systems Journal Volume 43, Number 3, 2004 Unstructured Information Management.

4. The Evolving Philosophers Problem: Dynamic Change Management
Jeff Kramer, Jeff Magee
IEEE Transactions on Software Engineering November 1990 Vol. 16 - No. 11 pp 1293 - 1306.

7. On-The-Fly Program Modification: Systems For Dynamic Updating
Mark E. Segal, Ophir Frieder
IEEE Software Volume 10, Number 2, March 1993 pp 53 - 65.

10. Architecture-Based Runtime Software Evolution
Peyman Oreizy, Nenad Medovic, Richard N. Taylor
In Proceedings of the International Conference on Software Engineering 1998 (ICSE'98), pages 177--186, April 1998.

• An Architecture-Based Approach to Self-Adaptive Software
Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gregory Johnson, Nenad Medvidovic,
Alex Quilici, David S. Rosenblum, Alexander L. Wolf
IEEE Intelligent Systems archive Volume 14, Issue 3 (May 1999) pp 54 - 62.

17. A Graph Based Architectural (Re)configuration Language
Michael Wermlinger, Antonia Lopes, Jose Luiz Fiadeiro
Proceedings of the 8th European Software Engineering Conference held jointly with 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering 2001, Vienna, Austria, September 10-14, 2001 pp 21 - 32.

21. Dynamic Software Updating
Michael W. Hicks, Jonathan T. Moore, Scott Nettles
Proceedings of the 2001 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), Snowbird, Utah, USA, June 20-22, 2001. SIGPLAN Notices 36(5) (May 2001), ACM, 2001, ISBN 1-58113-
414-2 pp 13 - 23.

26. Model-based Adaptation for Self-Healing Systems
David Garlan, Bradley R. Schmerl
Proceedings of the First Workshop on Self-Healing Systems, WOSS 2002, Charleston, South Carolina, USA,
November 18-19, 2002 pp 27 - 32.

30. System Support for Online Reconfiguration
C. A. N. Soules, J. Appavoo, K. Hui, D. D. Silva, G. R. Ganger, O. Krieger, M. Stumm, R. W. Wisniewski, M.
Auslander, M. Ostrowski, B. Rosenburg, and J. Xenidis
In Proceedings of the Usenix Technical Conference, San Antonio, TX, USA, June 2003.

34. Using Process Technology to Control and Coordinate Software Adaptation
Giuseppe Valetto, Gail Kaiser
International Conference on Software Engineering archive Proceedings of the 25th international conference on
Software engineering Portland, Oregon Pages: 262 - 272 2003.

2828

ReferencesReferences
22. Rainbow: Architecture-based Self-adaptation with Reusable Infrastructure

Shang-Wen Cheng, An-Cheng Huang, David Garlan, Bradley R. Schmerl, Peter Steenkiste
 1st International Conference on Autonomic Computing (ICAC 2004), 17-19 May 2004, New York, NY, USA.
23. Maintaining Consistency in a Database with Changing Types
 Stanley B. Zdonik Proceedings of the 1986 SIGPLAN workshop on Object-oriented programming Yorktown Heights,

New York, United States Pages: 120 - 127 1986.
24. Software Rejuventation: Analysis, Module and Applications

Yennun Huang, Chandra Kintala, Nick Kolettis, N. Dudley Fulton
Proceedings of the 25th International Symposium on Fault-Tolerant Computing (FTCS-25), Pasadena, CA, pp. June

1995, pp. 381-390.
25. Rewind, Repair, Replay: Three R's to Dependability

A. Brown and D. A. Patterson
In 10th ACM SIGOPS European Workshop, 2002.

26. Improving Availability with Recursive Micro-Reboots: A Soft-State System Case Study
George Candea, James Cutler, Armando Fox
Dependable systems and networks-performance and dependability symposium (DSN-PDS) 2002: Selected papers
pp 213 - 248.

27. Predicting Problems Caused by Component Upgrades
Stephen McCamant and Michael D. Ernst
In 10th European Software Engineering Conference and the 11th ACM SIGSOFT Symposium on the Foundations of

Software Engineering, pages 287--296, Helsinki, Finland, September 2003.
28. Improving System Dependability with Functional Alternatives

Charles P. Shelton and Philip Koopman
Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN'04) - Volume 00
Page: 295.

2929

Backup slidesBackup slides

3030

Component definitionsComponent definitions

ComponentComponent
 Software element that conforms to a component Software element that conforms to a component

model and can be independently deployed and model and can be independently deployed and
composed without modification according to a composed without modification according to a
composition standardcomposition standard

Component modelComponent model
 Defines specific interaction and composition Defines specific interaction and composition

standardsstandards
Component model implementationComponent model implementation
 Dedicated set of executable software elements Dedicated set of executable software elements

required to support the execution of components that required to support the execution of components that
conform to that modelconform to that model

3131

Efficient and transparent instrumentation of Efficient and transparent instrumentation of
application components using an aspect-application components using an aspect-

oriented approachoriented approach
Overview of AOPOverview of AOP
 Developed at Xerox PARC in the early 90’s (Gregor Kiczales et. Al)Developed at Xerox PARC in the early 90’s (Gregor Kiczales et. Al)
 Modularize cross-cutting concerns (non-functional requirements) and Modularize cross-cutting concerns (non-functional requirements) and

separate them from functional requirementsseparate them from functional requirements
 Some termsSome terms

Joinpoint – well defined point in execution flowJoinpoint – well defined point in execution flow
Pointcut – identifies a joinpoint e.g. using a regexPointcut – identifies a joinpoint e.g. using a regex
Advice – defines additional code to be executed at a joinpoint (before, Advice – defines additional code to be executed at a joinpoint (before,
around, after)around, after)
Introductions – modify classes, add members, change class relationshipsIntroductions – modify classes, add members, change class relationships

 Aspects and application code can be developed separately and weaved Aspects and application code can be developed separately and weaved
togethertogether

Compile time weaving – AspectJCompile time weaving – AspectJ
Runtime weaving – JBoss bytecode weavingRuntime weaving – JBoss bytecode weaving
HybridHybrid

3232

Rainbow – architecture-based self-Rainbow – architecture-based self-
adaptation with reusable infrastructureadaptation with reusable infrastructure

DefinitionsDefinitions
 ArchitectureArchitecture

An abstract view of the system as a composition of computational An abstract view of the system as a composition of computational
elements and their interconnections [Shaw & Garlan]elements and their interconnections [Shaw & Garlan]

 Architectural modelArchitectural model
Represents the system architecture as a graph of interacting components Represents the system architecture as a graph of interacting components
[popular format – ACME, xADL, SADL][popular format – ACME, xADL, SADL]
Nodes in the graph are termed components – principal computation Nodes in the graph are termed components – principal computation
elements and data stores of the systemelements and data stores of the system
Arcs are termed connectors and represent the pathways of interactionArcs are termed connectors and represent the pathways of interaction

 Architectural styleArchitectural style
Style specifies a vocabulary of component and connector types and the Style specifies a vocabulary of component and connector types and the
rules of system composition, essentially capturing the units of change rules of system composition, essentially capturing the units of change
from system to systemfrom system to system
Characterizes a family of systems related by shared structural and Characterizes a family of systems related by shared structural and
semantic properties {Types, Rules, Properties, Analyses}semantic properties {Types, Rules, Properties, Analyses}

 Architecture-based self-adaptationArchitecture-based self-adaptation
The use of architectural models to reason about system behavior and The use of architectural models to reason about system behavior and
guide adaptationguide adaptation

3333

System Validation/AssuranceSystem Validation/Assurance

Why should users trust a self-healing system to Why should users trust a self-healing system to
do the “right” thing?do the “right” thing?
 The system must be able to give guarantees about its The system must be able to give guarantees about its

qualitative characteristics before, during and after qualitative characteristics before, during and after
adaptationsadaptations

Availability, reliability, performance etc.Availability, reliability, performance etc.
 What kind of guarantees can the system give?What kind of guarantees can the system give?

AbsoluteAbsolute
ProbabilisticProbabilistic
Partial assurance of a few key system propertiesPartial assurance of a few key system properties
Assurance during degraded mode operationsAssurance during degraded mode operations
Assurance between fault occurrence time and detection timeAssurance between fault occurrence time and detection time

 Not all faults are detectableNot all faults are detectable

3434

System Validation/AssuranceSystem Validation/Assurance

Improving dependabilityImproving dependability
 Software rejuvenation [24]Software rejuvenation [24]

Addresses faults caused by software aging e.g. resource Addresses faults caused by software aging e.g. resource
leaksleaks

 System-level undo [25]System-level undo [25]
Addresses operator-induced/compounded failuresAddresses operator-induced/compounded failures
Rewind – revert state to an earlier timeRewind – revert state to an earlier time
Repair – operator makes any desired changes to the systemRepair – operator makes any desired changes to the system
Replay – roll forward with the “new” systemReplay – roll forward with the “new” system

 Functional alternatives rather than redundancy [28]Functional alternatives rather than redundancy [28]
Exploit a system’s available features to provide some system Exploit a system’s available features to provide some system
redundancy without additional redundant componentsredundancy without additional redundant components
Leverages components that satisfy overlapping system Leverages components that satisfy overlapping system
objectivesobjectives

3535

Rewind, repair, replay: three r’s to Rewind, repair, replay: three r’s to
dependabilitydependability

MechanismMechanism
 How is this different from related work?How is this different from related work?

Backup/restore/checkpointing schemes offer rewind/repair Backup/restore/checkpointing schemes offer rewind/repair
but deny the ability to roll forward once changes have been but deny the ability to roll forward once changes have been
mademade
Recovery systems for databases use rewind/replay to Recovery systems for databases use rewind/replay to
recover from crashes, deadlocks and other fatal events but recover from crashes, deadlocks and other fatal events but
do not offer the ability to inject repair into the recovery do not offer the ability to inject repair into the recovery
cyclecycle
The standard transaction model does not allow committed The standard transaction model does not allow committed
transactions to be altered or removed however extended transactions to be altered or removed however extended
transaction models have introduced the notion of a transaction models have introduced the notion of a
compensating transactioncompensating transaction

3636

Rewind, repair, replay: three r’s to Rewind, repair, replay: three r’s to
dependabilitydependability

MechanismMechanism
 Tracking recoverable state for replayTracking recoverable state for replay

When an undo is carried out it is the responsibility of the When an undo is carried out it is the responsibility of the
replay step to restore all the state changes that are replay step to restore all the state changes that are
important to the userimportant to the user
Defining exactly what state this encompasses is tricky e.g. Defining exactly what state this encompasses is tricky e.g.
an upgrade of a mail server could change the underlying an upgrade of a mail server could change the underlying
format of the mailbox fileformat of the mailbox file
Solution: Track user actions at the intentional level e.g. in Solution: Track user actions at the intentional level e.g. in
an undoable email system a user’s act of deleting a an undoable email system a user’s act of deleting a
message is recorded as “delete message with ID x” rather message is recorded as “delete message with ID x” rather
than “alter byte range x – y of file z”than “alter byte range x – y of file z”

3737

Rewind, repair, replay: three r’s to Rewind, repair, replay: three r’s to
dependabilitydependability

MechanismMechanism
 How does intentional tracking workHow does intentional tracking work

In the network service environment being In the network service environment being
targeted, users interact with the system through targeted, users interact with the system through
standardized application protocols (usually standardized application protocols (usually
comprised of a few action verbs e.g. HTTP PUT, comprised of a few action verbs e.g. HTTP PUT,
GET, POST).GET, POST).
Intercept and record user interactions at the Intercept and record user interactions at the
protocol levelprotocol level

3838

Rewind, repair, replay: three r’s to Rewind, repair, replay: three r’s to
dependabilitydependability

MechanismMechanism
 Are repairs also tracked?Are repairs also tracked?

No, because of practical reasonsNo, because of practical reasons
 User interactions are limited by the verbs-action User interactions are limited by the verbs-action

commands permitted by the protocol, however repair commands permitted by the protocol, however repair
actions are limited only by the ingenuity of the human actions are limited only by the ingenuity of the human
operatoroperator

3939

Rewind, repair, replay: three r’s to Rewind, repair, replay: three r’s to
dependabilitydependability

MechanismMechanism
 ArchitectureArchitecture

Basic structure of an undoable systemBasic structure of an undoable system
 A verb-based application interface that uses logical A verb-based application interface that uses logical

state names. This allows the undo system to properly state names. This allows the undo system to properly
disambiguate recoverable user state changes from disambiguate recoverable user state changes from
other system eventsother system events

 The verb based interface should cover all interactions The verb based interface should cover all interactions
with the system that affect user-visible state, including with the system that affect user-visible state, including
operator interfaces that are used to create, move, operator interfaces that are used to create, move,
delete and modify user state repositoriesdelete and modify user state repositories

 If existing protocols do not satisfy these requirements If existing protocols do not satisfy these requirements
then new protocols can be created and layered above then new protocols can be created and layered above
existing interfacesexisting interfaces

4040

System Validation/AssuranceSystem Validation/Assurance
Improving availabilityImproving availability
 Recursive micro-reboots [26]Recursive micro-reboots [26]

Consider failures as facts to be coped withConsider failures as facts to be coped with
Unequivocally returns the recovered system to its start state – best Unequivocally returns the recovered system to its start state – best
understood/tested stateunderstood/tested state
High confidence way to reclaim resourcesHigh confidence way to reclaim resources
Easy technique to understand and employ, automate, debug, implementEasy technique to understand and employ, automate, debug, implement

 Crash-only componentsCrash-only components
One way to shutdown – crashOne way to shutdown – crash
One way to start up – recoverOne way to start up – recover
All persistent state kept in crash-only data storesAll persistent state kept in crash-only data stores
Strong modularity, timeout based communication, lease-based resource Strong modularity, timeout based communication, lease-based resource
allocationallocation

Improving integrityImproving integrity
 Managing multiple versions via version handlers [23]Managing multiple versions via version handlers [23]
 Predicting problems caused by component upgrades [27]Predicting problems caused by component upgrades [27]
 Model constraints used in change management [13,19]Model constraints used in change management [13,19]

4141

Improving availability with recursive Improving availability with recursive
micro-rebootsmicro-reboots

MechanismMechanism
 Recursive recovery and micro-rebootsRecursive recovery and micro-reboots

A recursive approach to recoveryA recursive approach to recovery
 A minimal subset of components is recoveredA minimal subset of components is recovered
 If that fails progressively larger subsets are recoveredIf that fails progressively larger subsets are recovered

A micro-reboot is a low-cost form of reboot applied at the level of A micro-reboot is a low-cost form of reboot applied at the level of
fine-grained software componentsfine-grained software components
For a system to be recursively recoverable it must contain fine-For a system to be recursively recoverable it must contain fine-
grained components that are independently recoverable such that grained components that are independently recoverable such that
part of the system can be recovered without touching the restpart of the system can be recovered without touching the rest
Components must be loosely coupled AND prepared to be denied Components must be loosely coupled AND prepared to be denied
service from other components that may be in the process of service from other components that may be in the process of
micro-rebootingmicro-rebooting

 Popularity of loosely-coupled componentized systems (EJB,.NET) Popularity of loosely-coupled componentized systems (EJB,.NET)
A recursively recoverable system gracefully tolerates successive A recursively recoverable system gracefully tolerates successive
restarts at multiple levels in the sense that it does not lose or restarts at multiple levels in the sense that it does not lose or
corrupt data or cause other systems to crashcorrupt data or cause other systems to crash

4242

Repair adaptation backup slidesRepair adaptation backup slides

4343

ADT/Module replacementADT/Module replacement
Changing modules on-the-fly [2]Changing modules on-the-fly [2]
 Simple case – local data onlySimple case – local data only

Indirection mechanismIndirection mechanism
Old and new version instances available side-by-side for a short timeOld and new version instances available side-by-side for a short time
Old version services existing requests, new requests are redirected Old version services existing requests, new requests are redirected
transparently to the new versiontransparently to the new version

 General case – Shared/persistent dataGeneral case – Shared/persistent data
New version of a module modifies representation of a shared data structure New version of a module modifies representation of a shared data structure
on first encounteron first encounter
Version numbers signal whether to modifyVersion numbers signal whether to modify
Modifications must be delayed until old versions are completely finished with Modifications must be delayed until old versions are completely finished with
shared instancesshared instances

Other requirementsOther requirements
 Correctness of modifications should be analyzed/provenCorrectness of modifications should be analyzed/proven
 Access control to limit who can change indirection mechanisms and Access control to limit who can change indirection mechanisms and

initiate module swappinginitiate module swapping

4444

Method replacementMethod replacement

Dynamic Modification System (Dymos) [14]Dynamic Modification System (Dymos) [14]
 Supports changing a procedure’s interface between versionsSupports changing a procedure’s interface between versions
 Supports the implementation of static data local to a procedureSupports the implementation of static data local to a procedure
 Dymos is completely integrated – source code, object code, Dymos is completely integrated – source code, object code,

compilation artifacts (parse trees, ASTs and symbol tables) are compilation artifacts (parse trees, ASTs and symbol tables) are
available at all timesavailable at all times

 Supports the specification of the modules to update and the Supports the specification of the modules to update and the
conditions that must be satisfiedconditions that must be satisfied

 Tightly tied to the StarMod language, which was modified to Tightly tied to the StarMod language, which was modified to
support dynamic program updatingsupport dynamic program updating

 Tools must be on the host system to manipulate the compilation Tools must be on the host system to manipulate the compilation
artifactsartifacts

 Assumes the source code is always availableAssumes the source code is always available
 No support for distributed systemsNo support for distributed systems

4545

Component replacementComponent replacement

Dynamically Alterable System (DAS) operating Dynamically Alterable System (DAS) operating
system [14]system [14]
 Supports re-plugging – swapping modules with the Supports re-plugging – swapping modules with the

same interfacesame interface
 Supports restructuring of data within modulesSupports restructuring of data within modules
 Does not handle interface changesDoes not handle interface changes

K42 operating system [20]K42 operating system [20]
 Two basic mechanisms for online reconfigurationTwo basic mechanisms for online reconfiguration

InterpositionInterposition
Hot-swappingHot-swapping

4646

Server replacementServer replacement
Conic [13]Conic [13]

 Handle configuration at the configuration levelHandle configuration at the configuration level
Components and connectors (architecture)Components and connectors (architecture)

 Specify change declaratively in terms of system structure onlySpecify change declaratively in terms of system structure only
 System modification via change transactions generated from change System modification via change transactions generated from change

specificationsspecifications
 Use change specifications to scope changeUse change specifications to scope change
 Do not force change rather wait for nodes to quiesce. Nodes remain quiescent Do not force change rather wait for nodes to quiesce. Nodes remain quiescent

during changeduring change
 For change as a result of failure nodes would need to include recovery actionsFor change as a result of failure nodes would need to include recovery actions

Michigan Terminal System (MTS) [14]Michigan Terminal System (MTS) [14]
 Assumes interface remains constant between versionsAssumes interface remains constant between versions
 Coarse granularity for replacements – large system components e.g. a command Coarse granularity for replacements – large system components e.g. a command

interpreterinterpreter
 Does not address cases where a new service calls some old serviceDoes not address cases where a new service calls some old service
 Data formats cannot change between versionsData formats cannot change between versions
 Services disabled for the duration of the upgradeServices disabled for the duration of the upgrade

4747

Verifiable patchesVerifiable patches
Popcorn [18]Popcorn [18]
 Code and data patchesCode and data patches
 Build dynamic patches on top of dynamic linking mechanismsBuild dynamic patches on top of dynamic linking mechanisms
 Program re-linking after loading patchProgram re-linking after loading patch

Programmer specifies when to apply patchesProgrammer specifies when to apply patches
 Semi-automatic patch generation based on source comparisonSemi-automatic patch generation based on source comparison

Identify changes to functions and dataIdentify changes to functions and data
Generate stub functions and state transformersGenerate stub functions and state transformers

 Native code used in dynamic patches is coupled with Native code used in dynamic patches is coupled with
annotations such that the code is provably safe. A well-formed annotations such that the code is provably safe. A well-formed
Typed Assembly Language (TAL) program isTyped Assembly Language (TAL) program is

Memory-safe – no pointer forgingMemory-safe – no pointer forging
Control-flow safe – no jumps to arbitrary memory locationsControl-flow safe – no jumps to arbitrary memory locations
Stack-safe – no modification of non-local stack framesStack-safe – no modification of non-local stack frames

 System includes a TAL verifier and a prototype compiler from a System includes a TAL verifier and a prototype compiler from a
safe-C language, Popcorn, to TALsafe-C language, Popcorn, to TAL

